

## S.N.M COLLEGE, MALIANKARA DEPARTMENT OF PHYSICS

## LESSON PLAN

| Programme : B.Sc. Physics              |                                         |                                                                                                                                 |             |                |             |  |  |  |
|----------------------------------------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------|----------------|-------------|--|--|--|
| Semester                               | Course code                             | Course title                                                                                                                    | Theory<br>T | Practical<br>P | Credit<br>C |  |  |  |
| VI                                     | PH6CRT09                                | THERMAL AND STATISTICAL<br>PHYSICS                                                                                              | 54          | 0              | 3           |  |  |  |
| Teachers                               | Dr. Urmila K S, Mr. Namith Navakrishnan |                                                                                                                                 |             |                |             |  |  |  |
| Academic<br>Year                       | 2023-2024                               |                                                                                                                                 |             |                |             |  |  |  |
| Instructional<br>Approach or<br>method | LEARNINGIC<br>COLLABORATIV              | U <b>CTION</b> LECTURES<br>T ENABLED SESSIONS<br><b>E LEARNING</b> PROJECT/GROUP WORK<br>E <b>ARNING</b> –ASSIGNMENT & SEMINARS |             |                |             |  |  |  |

|      | COURSE OUTCOMES (COs)                                                                                                                                                                   |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C01: | Identify and describe the statistical nature of concepts and laws in<br>thermodynamics, in particular: entropy, temperature, chemical potential, free<br>energies, partition functions. |
| CO2: | Understand basic concepts and working of heat engines.                                                                                                                                  |
| CO3: | Use the statistical physics methods, such as Boltzmann distribution, Gibbs distribution, Fermi-Dirac and Bose-Einstein distributions to solve problems in some physical systems.        |
| CO4: | Explain fundamental concepts of statistical mechanics and computation of thermodynamics of ideal monoatomic gas.                                                                        |
| C05: | Derive Maxwell's thermodynamic relations.                                                                                                                                               |

| MODULE AND<br>HOUR                                                 | Learning<br>Objectives                                        | Lecture<br>No.&<br>Proposed<br>Date | Topics to be<br>covered                                                                | Instructional<br>Approach or<br>method | Date of<br>Completion<br>& Remarks                         |                                            |                                     |              |
|--------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------|--------------------------------------------|-------------------------------------|--------------|
| Module-I:<br>Equation of<br>state for gases                        | ermodynamics<br>eat engines<br>and second law<br>ermodynamics | 1<br>1/1/24                         | Equation of<br>an ideal gas<br>and<br>behaviour of<br>real gases                       | Lecture                                | 1<br>1/1/24                                                |                                            |                                     |              |
| Zeroth law of<br>thermodynamics<br>First laws of<br>thermodynamics |                                                               | 2<br>5/1/24                         | Andrew's<br>experiment<br>on<br>carbondioxide                                          | Lecture                                | 2<br>5/1/24                                                |                                            |                                     |              |
| Heat engines<br>and second law<br>of                               |                                                               |                                     |                                                                                        |                                        | 3<br>8/1/24                                                | Critical state<br>and two<br>phase regions | Video lecture                       | 3<br>8/1/24  |
| thermodynamics<br>21 Hours                                         |                                                               | 4<br>12/1/24                        | Intermolecula<br>r forces and<br>Van der<br>Waals<br>equation of<br>state              | ICT enabled<br>classroom<br>session    | 4<br>12/1/24                                               |                                            |                                     |              |
|                                                                    |                                                               |                                     |                                                                                        | 5<br>15/1/24                           | Van der<br>Waals<br>isotherms<br>and critical<br>constants | ICT enabled<br>classroom<br>session        | 5<br>15/1/24                        |              |
|                                                                    |                                                               |                                     |                                                                                        |                                        | 6<br>19/1/24                                               | Limitation of<br>vander Waals<br>equation  | ICT enabled<br>classroom<br>session | 6<br>19/1/24 |
|                                                                    |                                                               | 7<br>22/1/24                        | Thermodyna<br>mic system,<br>surroundings<br>, variables<br>and thermal<br>equilibrium | Discussion                             | 7<br>22/1/24                                               |                                            |                                     |              |
|                                                                    |                                                               | 8<br>29/1/24                        | Zeroth law of<br>thermodynam<br>ics                                                    | Lecture                                | 8<br>29/1/24                                               |                                            |                                     |              |

| -             | · _ · · ·                                                     | ·                    |               |
|---------------|---------------------------------------------------------------|----------------------|---------------|
| 9             | Reversible                                                    | Discussion           | 9             |
| 2/2/24        | and<br>Irreversible                                           |                      | 2/2/24        |
| 10            | processes<br>Internal                                         | Assignment           | 10            |
| 5/2/24        | energy, heat,<br>work, cyclic<br>processes                    |                      | 5/2/24        |
| 11            | First law of                                                  | Discussion           | 11            |
| 9/2/24        | thermodynam<br>ics                                            |                      | 9/2/24        |
| 12            | Indicator                                                     | Lecture              | 12            |
| 12/2/24       | Diagram                                                       |                      | 12/2/24       |
| 13            | Work done in                                                  | ICT enabled          | 13            |
| 13/2/24       | a reversible<br>isothermal<br>expansion of<br>ideal gas       | classroom<br>session | 13/2/24       |
| 14            | Work done in                                                  | ICT enabled          | 14            |
| 14/2/24       | a reversible<br>adiabatic<br>expansion of<br>ideal gas        | classroom<br>session | 14/2/24       |
| 15            | Second law of                                                 | ICT video            | 15            |
| 16/2/24       | thermodynam<br>ics                                            | through<br>Moodle    | 16/2/24       |
| 16            | Heat engine                                                   | ICT video            | 16            |
| 19/2/24       | and<br>efficiency                                             | through<br>Moodle    | 19/2/24       |
| 17            | Carnot's ideal                                                | Lecture with         | 17            |
| 19/2/24       | heat engine<br>and work<br>done<br>by the engine<br>per cycle | demonstration        | 19/2/24       |
| 18<br>20/2/24 | Carnot<br>refrigerator<br>and heat<br>pump                    | Assignment           | 18<br>20/2/24 |

|                                                                       |                                                  | 19<br>20/2/24 | Carnot<br>theorem                                                               | Seminar<br>presentation             | 19<br>20/2/24 |
|-----------------------------------------------------------------------|--------------------------------------------------|---------------|---------------------------------------------------------------------------------|-------------------------------------|---------------|
|                                                                       |                                                  | 20<br>21/2/24 | Clausius-<br>Clapeyron<br>latent heat<br>equation                               | Lecture                             | 20<br>21/2/24 |
|                                                                       |                                                  | 21<br>21/2/24 | Discussion<br>and solving of<br>previous year<br>question<br>paper              | Group work                          | 21<br>21/2/24 |
|                                                                       |                                                  | 22<br>22/2/24 | Solving<br>numerical<br>problems                                                | Group work                          | 22<br>22/2/24 |
| Module-II:<br>Entropy                                                 | To understand<br>the definition<br>and principle | 23<br>22/2/24 | Definition of<br>entropy                                                        | Lecture                             | 23<br>22/2/24 |
| Thermodynamic<br>relations<br>Conduction and<br>radiation<br>17 Hours | of entropy,<br>thermodynami<br>c relations       | 24            | Principle of<br>increase of<br>entropy,<br>entropy and<br>unavailable<br>energy | Lecture                             | 24<br>23/2/24 |
|                                                                       |                                                  | 25            | Change in<br>entropy in<br>heat<br>conduction                                   | ICT enabled<br>classroom<br>session | 25<br>23/2/24 |

| 26 | Change in<br>entropy in<br>reversible and<br>irreversible<br>process   | ICT video<br>through<br>Moodle      | 26<br>26/2/24 |
|----|------------------------------------------------------------------------|-------------------------------------|---------------|
| 27 | Efficiency of<br>Carnot cycle<br>from TS<br>diagram                    | ICT enabled<br>classroom<br>session | 27<br>26/2/24 |
| 28 | Entropy of an<br>ideal gas,<br>entropy and<br>disorder                 | Seminar<br>presentation             | 28<br>27/2/24 |
| 29 | Maxwell's<br>thermodynam<br>ic relations                               | Lecture                             | 29<br>27/2/24 |
| 30 | TdS<br>equations,<br>energy<br>equation,<br>heat capacity<br>equations | ICT enabled<br>classroom<br>session | 30<br>28/2/24 |
| 31 | Thermodyna<br>mic functions                                            | Assignment                          | 31<br>28/2/24 |
| 32 | Third law of<br>thermodynam<br>ics                                     | Lecture                             | 32<br>29/2/24 |
| 33 | Conduction<br>and thermal<br>conductivity                              | Discussion                          | 33<br>29/2/24 |
| 34 | Lee's disc<br>experiment                                               | Video lecture                       | 34<br>1/3/24  |
| 35 | Energy flux,<br>intensity and<br>radiant<br>emittance                  | Seminar<br>presentation             | 35<br>1/3/14  |
| 36 | Stefan's law                                                           | Lecture                             | 36<br>4/3/24  |

|                                         |                                        | 37 | Stefan-<br>Boltzmann<br>law                                            | Assignment                          | 37<br>5/3/24  |
|-----------------------------------------|----------------------------------------|----|------------------------------------------------------------------------|-------------------------------------|---------------|
|                                         |                                        | 38 | Solving<br>numerical<br>problems                                       | Group work                          | 38<br>5/3/24  |
|                                         |                                        | 39 | Doubt<br>clearing<br>session                                           |                                     | 39<br>6/3/24  |
|                                         |                                        | 40 | Internal<br>Examination                                                |                                     | 40<br>7//24   |
| Module-III:                             | To learn about<br>microstates,         | 41 | Microstates<br>and<br>Macrostates                                      | Lecture with<br>demonstration       | 41<br>11/3/24 |
| Statistical<br>mechanics<br>Statistical | macrostates<br>and various<br>types of | 42 | Principle of<br>equal a priori<br>probability                          | Lecture                             | 42<br>11/3/24 |
| distributions<br>16 Hours               | distributions                          | 43 | Phase space<br>and<br>Ensemble                                         | Discussion                          | 43<br>12/3/24 |
|                                         |                                        | 44 | Ensemble<br>formulation<br>of statistical<br>mechanics                 | Discussion                          | 44<br>12/3/24 |
|                                         |                                        | 45 | Microcanonic<br>al, Canonical<br>and<br>Grand<br>canonical<br>ensemble | ICT enabled<br>classroom<br>session | 45<br>13/3/24 |
|                                         |                                        | 46 | Partition<br>function and<br>average<br>energy of<br>particle,         | Lecture with<br>demonstration       | 46<br>13/3/24 |

| 47 | Maxwell<br>Boltzmann<br>distribution<br>law          | ICT enabled<br>classroom<br>session | 47<br>14/3/24 |
|----|------------------------------------------------------|-------------------------------------|---------------|
| 48 | Bose-Einstein<br>statistics                          | ICT enabled<br>classroom<br>session | 48<br>15/3/24 |
| 49 | Fermi-Dirac<br>distribution<br>law                   | ICT enabled<br>classroom<br>session | 49<br>15/3/24 |
| 50 | Equipartition<br>theorem                             | Seminar<br>presentation             | 50<br>18/3/24 |
| 51 | Discussion of<br>previous year<br>question<br>papers | Group work                          | 51<br>19/2/24 |
| 52 | Solving<br>numerical<br>problems                     | Group work                          | 52<br>19/2/24 |
| 53 | Doubt<br>clearing<br>session                         |                                     | 53<br>20/3/24 |
| 54 | Internal<br>Examination                              |                                     | 54<br>21/3/24 |

Vernila: K.S.

Neway

Signature of Teacher(s) in charge

Name and signature of HoD

