

S.N.M COLLEGE MALIANKARA

DEPARTMENT OF Botany

LESSON PLAN

	Programme : M. Sc. Botany							
Semester	Course code	Course title	Theory T	Practical P	Credit C			
3	BY010302	BIOTECHNOLOGY, BIOINFORMATICS AND BIONANOTECHNOLOGY	72	36	4			
Teachers	Asha A							
Academic Year	2022-23							
Instructional		CTION LECTURES / DEMONSTRATION GUIDE	CD					
Approach or		PRACTICE AND APPLICATION						
method		LEARNING PROJECT/GROUP WORK ARNING ASSIGNMENT & PRESENTATIONS						

	COURSE OUTCOMES (COs)
CO1:	To transmit the knowledge of bioprocessing and micropropagation
CO2:	To introduce genome editing and other advance techniques in biotechnology
CO3:	To confer advancements in bioinformatics
CO4:	To provide an overview of nanotechnology and its applications
CO5:	Isolation, preparation, sterilization and inoculation of different explants.

MODULE AND HOUR	Learning Objectives	Lectu re No.	Topics to be covered	Instructio nal Approach or method	Remar ks
BIOTECHNOLOGY Module 1: Bioprocess Technology	Students get a idea about history of biotechnology	1	Introduction to classical and modern biotechnology.	Lecture	
	Get an indepth understanding about microbial	2	Microbial biotechnology: Mode of operation of a bioprocess – basic concepts of batch, fed batch and	Lecture	

	biotechnology and bioreactors		continuous operation of a bioprocess.	
		3	Basic design and construction of various types of bioreactors used in bioprocesses.	Seminar & Discussion
		4	Commercial production of metabolites using bioreactors. Submerged and solid state fermentation. Microbes in production of enzymes, antibiotics, biopolymers.	Seminar & Discussion
		5	Commercial production of metabolites using bioreactors. Submerged and solid state fermentation. Microbes in production of bioethanol, organic acids, SCP.	Seminar & Discussion
		6-9	Production of amylase by solid state and submerged fermentation.	Practical
Module 2: Plant tissue culture	Students will get knowledge about plant tissue culture	10	Brief history and important milestones in plant tissue culture.	Seminar & Discussion & Discussion
	Students will be equipped to do all steps of plant tissue culture by themself	11	Types of cultures: organized structures - meristem, shoot tip, node, embryo, root cultures;	Seminar & Discussion & Discussion
	memsen	12	Unorganized structures - callus, suspension and protoplast cultures.	Lecture
		13	Cellular totipotency. Differentiation of cells in callus - tracheid formation, chloroplast differentiation.	Lecture

14	Factors influencing vascular differentiation.	Lecture
15	Organogenic and embryogenic differentiation	Lecture
16	Culture protocol: general composition of the culture media; solid and liquid media – gelling agents.	Seminar & Discussion & Discussion
17	Preparation and standardization of MS medium for shoot and root differentiation. Sterlization of medium, glasswares, instruments, plant material, transfer area.	Seminar & Discussion & Discussion
18-21	Prepare the stock solutions MS medium and prepare MS medium from the stock solutions	Practical
22	Preparation of explants and inoculation, incubation. Pattern of growth and development, subculturing	Seminar & Discussion & Discussion
23	Isolation, preparation, sterilization and inoculation of different explants - shoot tip, .	Practical
24	Isolation, preparation, sterilization and inoculation of different explants - node.	Practical
25	Isolation, preparation, sterilization and inoculation of	Practical

			different explants -anther.	
		26	Isolation, preparation, sterilization and inoculation of different explants like shoot tip, node, anther, embryo and cambium.	Practical
		27	Micropropagation: methods – shoot tip and nodal segment culture,	Seminar & Discussion & Discussion
		28	Stages of micropropagation. Advantages and disadvantages of micropropagation.	Seminar & Discussion & Discussion
		29	Applications of tissue culture.	Seminar & Discussion & Discussion
Module 3: Genetic engineering	Get an idea about genetic engineering, the processes	30	Important steps in gene cloning: basic principles of gene cloning.	Lecture
	involved and enzymes required Will be able to understand the importance and scope of genetic	31	Isolation and purification of DNA from cells	Lecture
		32-35	DNA isolation from coconut/onion/caulifl ower and separation using agarose gel	Practical
	engineering	36	Isolation of DNA fragments of interest, creation of recombinant DNA	Lecture
		37	Introduction into host cells, selection and screening of recombinants, propagation of recombinants.	Lecture
		38	Tools and techniques: Restriction endonucleases, Ligases.	Lecture

		39	Vectors – necessary properties of a vector, types of vectors based on origin;	Lecture
		40	Types of vectors based on origin;	Lecture
		41	Shuttle vectors, expression vectors.	Lecture
		42	Plant transformation: Agrobacterium tumefaciens mediated gene transfer in plants -	Lecture
		43	details of vector system based on A. tumefaciens, binary vector and cointegrate vector.	Lecture
		44	Steps in Agrobacterium mediated gene transfer to plants.	Lecture
		45	Plant transformation by direct transfer of DNA (Vectorless methods) - microprojectiles, electroporation, microinjection, chemical, lipofection	Seminar & Discussion
		46	Applications of genetic engineering - in genetic studies, agriculture, medicine and environment	Seminar & Discussion
		47	Applications of genetic engineering - in agriculture	Seminar & Discussion
		48	Applications of genetic engineering - in medicine and environment.	Seminar & Discussion
Module 4: Genome editing	Get insight into genome editing	49	Introduction,	Lecture
Cutting	and its	50	Scope & methods	Lecture
	application	51	Applications	Lecture

Module 5: Advanced tools and techniques in Biotechnology	ools and techniques in learn about	52	cDNA synthesis, artificial DNA synthesis – solid-phase synthesis.	Lecture		
		53	PCR - Procedure and applications,	Seminar & Discussion and discussion		
		54	Variants of PCR - Real time PCR and reverse transcriptase PCR and their applications	Lecture		
		55	Automated DNA sequencing	Lecture		
		56	Site directed mutagenesis.	Lecture		
		57	Blotting techniques - procedure and applications of southern, northern.	Seminar & Discussion and discussion		
				58	Blotting techniques - procedure and applications western, and dot blotting	Lecture
		59	Microarray (gene chip) technology and its applications	Lecture		
		60	Procedure and applications of DNA profiling, Footprinting	Lecture		
		61	Procedure and applications of FISH and GISH	Lecture		
Module 6: Genomics	Get indepth knowledge about genomics and genome annotation	62	Introduction to genome, genomics, transcriptomics and proteomics.	Lecture		
		63	Structural genomics - genome sequencing strategies.	Lecture		
		64	Genome annotation – structural annotation	Lecture		

		65	Genome annotation – functional annotation	Lecture
		66	Gene expression study using microarrays.	Lecture
Module 7: Societal concerns over biotechnology	Students will understand the negative aspects of using genetic enginerring	67	Potential impact of GMOs on the ecosystem; GM food – effect on health and environment.	Seminar & Discussion and discussion
	engmenning	68	Misuse of modern molecular biology tools and techniques, bioweapons, bioterrorism.	Seminar & Discussion and discussion
		69	Ethical issues relating to rDNA techniques.	Seminar & Discussion and discussion
		70	Patents – issues relating to patenting living organisms, their genes and other bioresources.	Seminar & Discussion and discussion
BIOINFORMATICS Module 1: Methods, tools and applications of bioinformatics	Get knowledge about databases and sequence alignment Students will be able to do blast search and	71-72	Databases: Organization, primary and secondary databases. DNA sequence databases - Genbank, EMBL & DDBJ.	Seminar & Discussion and discussion
	find similarity between sequence of different	73	Protein databases - SWISS-PROT, PDB	Seminar & Discussion and discussion
	species	74	Sequence alignment: significance; global alignment, pair wise analysis, scoring matrices (an introduction).	Lecture
		75	Database similarity search – query sequence search; BLAST – Algorithm and different versions. FASTA.	Lecture

		76	Multiple sequence analysis, dynamic programming.	Lecture
		77-80	Blast search with Protein sequence (Magnolia latahensis sequence)	Practical
		81-84	Blast search with nucleic acid sequence (Neanderthal man's Paleo DNA)	Practical
Module 2: Molecular phylogeny	Students will learn about phylogenetic tree	85	Introduction, molecular clock hypothesis.	Lecture
	Student will be able to create phlogentic tree of different organism and	86	Phylogenetic trees, terminology in phylogenetic tree. Tree drawing methods.	Lecture
	will be able to identify the evolutionary relationship between different species.	87	Cladogram and Phylogram. Significance of molecular phylogeny.	Lecture
		88-91	Phylogenetic tree creation with the help of CLUSTAL X, W or MUSCLE and tree drawing tools.	Practical
		92-95	Creation of phylogentic trees for selected families of Eudicots	Practical
Module 3: Structural bioinformatics	Students will be able to know how is unknown protein	96	Introduction, molecular structure viewing tool – Rasmol;	Lecture
	protein structure predicted.	97	Protein structure prediction – secondary structure prediction (Chou Fasman method).	Lecture
		98	Protein structure prediction –tertiary structure prediction (Homology modeling).	Lecture

		99-10 2	Molecular docking (using either free or commercial software)	Practical
BIONANOTECHNOL OGY Module 1: Introduction to nanoparticles and nanotechnology	Students learn about synthesis of nanoparticles using biological	103	An overview on concepts, strategies and tools. Types of nanoparticles and their relative merits and demerits.	Lecture
	organisms	104	Method of biological synthesis of Zn nanoparticles – plant extract, bacteria and fungi.	Lecture
		105	Method of biological synthesis of Ag nanoparticles – plant extract, bacteria and fungi.	Lecture
Module 2: Applications of bionanotechnology	Students will beaccomsted to application of bionanotechnol	106	Use of nanoparticles in agriculture, medicine and environment.	Lecture
	ogy.	107	Impact of NPs on germination and seedling emergence, parameters in various crops.	Lecture
		108	Effect of NPs on gene expression. Translocation and accumulation of NPs in plant tissues and organs.	Lecture

S.N.M COLLEGE, MALIANKARA

DEPARTMENT OF PHYSICS

LESSON PLAN

Programme : M.Sc. Physics								
Semester	Course code	Course title	Theory T	Practical P	Credit C			
ш	PH800301	ELECTRODYNAMICS	72	0	4			
Teachers	Dr. Lakshmi S	Bose, Dr. Urmila K S		LI				
Academic Year	2022-23							
Instructional Approach or method	LEARNING	CTION LECTURES ENABLED SESSIONS LEARNING PROJECT/GROUP WORK ARNING ASSIGNMENT, QUIZZ & SEMIN	ARS	1				

COURSE OUTCOMES (COs)

CO1:
CO2: Explain the electromagnetic field radiating from accelerated charges and the impact of relativity in electromagnetism along with confined propagation of electromagnetic wave
CO3: Understand the wave nature of the electromagnetic field and its properties.
CO4: Use Maxwell equations in analyzing the electromagnetic field due to time varying charge and current distribution
CO5: Describe the nature of electromagnetic wave and its propagation through different media and interfaces

MODULE AND HOUR	Learning Objectives	Lecture No.	Topics to be covered	Instructional Approach or method	Remarks
		1	Introduction to Electrostatics, term electricity	Discussion as group	
		2	Fundamental laws in electrostatistics	ICT enabled Lecture with examples	
		3	Dielectric Polarization	Lecture & Demonstration	
		4	Electric field in conductor, dielectric	Problems and illustration using Griffith	
		5	Gauss law in dielectrics,	Video Lecture	
		6	Boundary conditions in electrostatics, between different media	Lecture	
		7	Uniqueness theorem And electrostatic potential	Video Lecture	
	Learn to integrate theoretical	8	Poisson and Laplace equations	Video Lecture	
Electrostatics, Magnetostatics and	Concepts of electricity, magnetism & electrodynamics	9	Laplace equations for boundary value problems	Group work and problems	
basics of Electrodynamics(18	that exist in nature with a prominent	10	Method of images	ICT enabled classroom session	
hrs)	role in the daily activities of human being	11	Method of image point charge	Lecture	
		12	Method of image line charge	Lecture	
		13	Potential at a distance multipole expansion	ICT Video through Moodle	
		14	Electric field of a dipole	Lecture	
		15	Magnetism & Biosavats law	Group work	
S.N.M COL		16	Divergence & curl,Magnetic vector potential, multipole expansion	Video Lecture	

		33	Previous year essay questions	Class test
		34	Doubt clearing sessions	Group work
		35	Discussions with seminar topics	Group work
		36	Previous year question paper discussions	Group work
		37	Potential formulation of electrodynamics	Lecture
Module III electro Electromagnetic radiation (18 hrs) proble potent		38	Gauge transformations	Lecture
		39	Coulomb and Lorentz gauge	Comparative study using problems in electrodynamics
	Learn to integrate the formulation of	40	Continuous charge distribution	Lecture
	electrodynamics where one can able	41	Retarded potential	Video Lecture
	to solve the problems by using potentials in electrodynamics	42	Retarded potential-problems	Group work
		43	Jefmenko's equation	Seminar Presentations
		44	Point charges	Lecture
		45	Lienard-Wiechert potentials	Video Lecture through Moodle
		46	Field of a point charge in motion	Lecture I
		47	Field of a point charge in motion	Lecture I continuation
		48	Power radiated by a point charge	ICT enabled classroom session
		49	Electric dipole radiation	Video Lecture
S.N.M CO	NT OF PHYSIC	50	-	Lecture continuation

N-PARAVUR-683 510

17	Poynting theorem,Maxwell's stress tensor- momentum conservation.	Lectures
18	Previous year question paper discussions and problem solving	Discussion and doubt clearing session
19	Brainstorming session	

		20		
		20	Internal Examination	
		21	Wave equation of E & H	Introductory lecture
Electromagnetic	Understanding of plane waves through which one	22	monochromatic plane waves- energy momentum	Seminar Presentation
waves (18 hrs)	can understand the propagation of electromagnetic	23	Propagation of em waves through linear media	Seminar Presentation
	waves in various media	24	Reflection and transmission of a plane wave at normal incidence	Lecture and work as a group for derivations
		25	Reflection and transmission of a plane wave at oblique incidence	Lecture
		26	Electromagnetic waves in a conducting medium	Seminar Presentation
		27	Reflection at conducting surface	Lecture with demonstration
		28	Reflection at conducting surface	Lecture with demonstration
		29	Dispersion of electromagnetic waves in non-conductors	Lecture with demonstration
		30	Dispersion of electromagnetic waves in conductors	Lecture with demonstration
SEPARTMENT C	F PHYSIC:	31	Dispersion of electromagnetic waves in plasma medium	Lecture with demonstration
MALIYANIZ		32	Problems	Group work
APARAVUR-	583 518			

		51	magnetic dipole radiation	Lecture continuation
		52	Radiation from arbitrary distribution of charges	Lecture
	53	Radiation from arbitrary distribution of charges	Video lecture	
		54	Abraham Lorentz formula	Lecture continuation
Relativistic electrodynamics and Waveguides (18 Hrs)		55	Relativistic electrodynamics	Lecture
		56	Structure of spacetime	Lecture
		57	Four vectors	Video work and seminar
		58	Proper time and proper velocity	Lecture
		59	Relativistic energy and momentum	ICT enabled classroom session
		60	Relativistic dynamics- Minkowski force	Lecture
		61	Magnetism as a relativistic phenomenon	Assignment
		62	Lorentz transformation of em field	Lecture
		63	field tensor electrodynamics in tensor notation	Lecture
		64	Potential formulation of relativistic electrodynamics	Lecture
		65	Waveguides	Group work
		66	Waves between parallel planes- TE TM-TEM waves	Lecture
ZERAKI	MENT OF PHTSK	67	Rectangular waveguide- TÉ-TM waves	Video lecture

MALIYANKARA

68	Impossibility of TEM wave	Seminar presentations
69	Cylindrical waveguide- TE-TM waves	Video Lecture
70	Problems	Assignments
71	Previous year question paper discussions	Group work
72	Doubt clearing session	Group work

Lalesh & Box 800

Signature of Teacher(s) in charge

S.N.M COLLEGE MALIYANKARA N-PARAVUR-683 516

Department Seal