SNM COLLEGE MALIANKARA

ENERGY AUDIT REPORT

March 2023

Energy Management Centre - Kerala (Department of Power, Govt of Kerala)

CERTIFICATE OF EMPANELMENT

This is to certify that **M/s. Alenso Energy** (N, Ground Floor, Brindavan Business Centre, Manimala Road, Kochi) is empanelled as Energy Audit firm in Energy Management Centre Kerala to conduct mandatory energy audit as per Government of Kerala G.O (Rt) No.2/2011/PD dated 01.01.2011.

Empanelment No: EMCEEA-3816F-1

Scope/Area	Building	Industry -Electrical	Industry Thermal
	Yes	Yes	Yes

This empanelment is valid up to 01/02/2024 Issuing Date: 02/02/2021 Place: Thiruvananthapuram

> Director, Energy Management Centre Kerala

ENERGY AUDIT REPORT

at

SNM College Maliankara

March 2023

By

Alenso Energy N, Brindavan Business Centre, Manimala Road, Edappally PO KOCHI - 682 024

Ph: 91 484 2334363 email: energy@alenso.in Web: www.alenso.in

We sincerely thank the management, staff and students of SNM College, Maliankara for giving us an opportunity to evaluate the usage of energy in their facility and co-operating wholeheartedly throughout our audit program. We would like to place on record our special thanks to Dr. Jitha T.H, Principal and Dr. Lakshmi S Bose, Assistant Professor, Physics Department for entrusting this study with us. All employees co-operated wholeheartedly in accompanying us. Still, special mention is due for Ms. Nitha A U, Assistant Professor Economics Department & NAAC Coordinator, Dr. Baiju E C, Assistant Professor Botany Department & IQAC Coordinator, Mr. Dileep, Manager and Mr. Sanoop, Electrician who closely interacted with us on a daily basis. All of them participated enthusiastically in discussions on energy performance. This analysis and report would not have been possible without their inputs and involvement.

Mr. Azeem K Senior Consultant

Kochi

17.03.2023

Contents

Audit Teamvi
Executive Summary1
E.1: Energy Performance1
E.2: Energy Saving Proposals1
Introduction
1.1: Facility Details4
1.2: Energy Share5
Energy & Utility Description
2.1: Electricity
2.1.1: Details of Electrical Panels & Distribution Boards6
2.2: Water7
2.3: Diesel
2.4: Biogas
Energy Performance
3.1: Energy Consumption9
3.2: Load Distribution9
Equipment Performance
4.1: Lighting
4.2: Pumps
4.3: Air Conditioners
Climate Impact
Recommendations for Energy Conservation
Appendix19
Appendix I – Electricity Bill
Appendix II – Load Matrix
Appendix III – Layout
Appendix III - Abbreviations

LIST OF TABLES

Table E-1: Summary of Energy Performance	1
Table E-2: Energy Saving Proposals	1
Table 1-1: Facility Details	4
Table 2-1: Details of Common Electrical Supply	6
Table 3-1: Energy Performance	9
Table 3-2: Category Wise Power Rating and Energy Consumption	9
Table 4-1: Lighting Details	. 11
Table 4-2: Pump Details	. 11
Table 4-3: AC Details	. 12
Table 5-1: Carbon Emission Details	. 13
Table 6-1: Summary of Recommendations	. 14

LIST OF FIGURES

Figure 2.2: (a): Transformer, (b): Main Panel, (c): APFC Panel, (d): SNM College Feeder	7
Figure 2.2: (e): AMF Panel (Main Panel- SNM College), (f): SSB 1, (g): SSB 1A	7
Figure 2.3 (a): Well, (b): Storage tank, (C): Rain Water Harvesting tank	7
Figure 2.4: Generator	8
Figure 2.5: Biogas Plant	8
Figure 3.1: Energy Consumption Category wise	. 10

Audit Team

- 1. Mr. Azeem K , M. Tech, Certified Energy Auditor EA 3375
- 2. Mr. Ahammed Kabeer T A , B. Tech (Ele), ME (Energy Engineering), Certified Energy Auditor – EA 1156
- Dr. Janesh N M, B. Tech (Ele), MSC (Renewable Energy), PhD, Certified Energy Auditor – EA 10690
- 4. Mr. Ajith M, B. Tech (Ele), Energy Engineer

Executive Summary

E.1: Energy Performance

The energy performance of the facility can be summarized as follows:

Table E-1: Summary of Energy Performance

Parameter	Electricity	Electricity Diesel		Total	
Annual Consumption	84,000	612	1,140	85,897#	
Unit of measurement	kWh	Ltr.	kg	kWh	
Annual cost (₹)	5,23,946	57,709	1,24,440	7,06,094	
Unit cost (₹ / unit)	Rs.6.2/kWh	Rs.94.3/Ltr	Rs.109.2/kg		
Annual equivalent emission (Tons of CO ₂)	68.9	1.6	3.4	73.9	
Built-up area (m2)	10740.53				
Energy Performance Index – EPI (kWh/m2/year)	7.8	0.2	-	8.0	

*Based on equivalent power generation estimated from apportioned diesel consumption

The facility have carbon emission equivalent to 74 tons per year. It can be reduced by implementing the proposals recommended below.

E.2: Energy Saving Proposals

Table E-2: Energy Saving Proposals

SI. No.	Energy Saving Opportunity	Category	Capital Investment Required	Annual Energy Savings	Annual Financial Savings	Simple Payback Period
Unit	-	-	₹	kWh	₹	months
1	Replace 105 existing tube lights with LED tubes	EE	47,250	3,629	25,039	23
2	Replace 268 existing ceiling fan with energy efficient BLDC fans	EE	8,57,600	15,437	1,06,514	97
3	Replace 3 existing 3 star AC to latest 5 star inverter AC	EE	1,17,000	2,135	14,730	95
4	Install 4 kW off grid solar pv on rooftop	RE	3,60,000	5,840	55,498	78

ENERGY AUDIT REPORT

SI. No.	Energy Saving Opportunity	Category	Capital Investment Required	Annual Energy Savings	Annual Financial Savings	Simple Payback Period
5	Install 15 kW on grid solar pv on rooftop	RE	11,25,000	21,900	1,51,110	90
	Total		25,06,850	48,940	3,52,891	86

Introduction

Sree Narayana Mangalam College, Maliankara, is a general degree college located in Maliankara, Kerala. It was established in the year 1964. The college is affiliated with Mahatma Gandhi University. This college offers different courses in arts, commerce and science.

SNM College Maliankara symbolises the steady advancement of an underdeveloped village, with its vast population belonging to the backward classes, towards social and cultural regeneration. Its mission has been, as enunciated by the great social revolutionary of Kerala, Sree Narayana Guru, emancipation through education. The institution upholds the message of the great Guru and strives to be a source of enlightenment to the people at large and poor and socially backward, in particular. From its inception in 1964, the college has been rendering commendable service as a centre of learning and culture.

The academic community of the college is totally committed to help evolve a new generation of young people who are just, kind and responsible. The institution's thrust is to impart holistic education to young men and women from all strata of society and develop in them employability and the other skills necessary for being successful in life. The area, where the college is situated, is no more an isolated, underdeveloped part and is on the wings of development and progress.

The college is the legacy of the Vadakkekara Hindu Matha Dharma Paripalana Sabha, a voluntary organisation formed in 1882, by the spirited youth of the backward Ezhava community in the Vadakkekara region. The H.M.D.P. Sabha, Moothakunnam as it is popularly known, launched a vigorous campaign for social justice and liberation from social bondage. The message and the benediction of Sree Narayana Guru provided Inspiration and the right direction to the activities. As part of the movement, the Sabha took initiative in the establishment of educational institutions. The institutions, run by the Sabha, have played a leading role in fighting the evils of illiteracy and ignorance among the poor and downtrodden and raising the cultural standards of the masses. The SNM College, Maliankara is another link in the tradition,

The College was inaugurated in 1964 by Sri.Sahodaran Ayyappan, an ardent disciple of Sree Narayana Guru and also leading public figure championing the cause of social liberty. It was in a cluster of thatched sheds near the Moothakunnam temple that the classes were held in the beginning. The foundation stone for the college building at Maliankara was also laid at that time by Sahodaran Ayyappan himself. The college was shifted to new campus at Maliankara in 1965. The present massive buildings were constructed in subsequent years, providing facilities for the expansion of the college.

Degree Courses were started in 1971, Post Graduate Courses in 1983 and Research centre in 2011. The college has a student strength of more than 2000 at the Under Graduate and Post Graduate levels comprising of 13 Degree Courses, 8 PG Cources, 1 Integrated PG Course and 2 research centres.

Vision of college

"Liberation through Education and empowerment through organisation"

Mission of college

- > To institutionalize Guru's philosophy: One Caste, One Religion, One God for Man
- > To provide value and need based education to all
- > To infuse the spirit of nationalism and patriotism in young minds.
- To bring about an overall development of the students as a whole, especially those who hail from backward sections.
- > To contribute to the moral and ethical enrichment of the society

Motto of College

"Enlightenment through Education"

1.1: Facility Details

Table 1-1: Facility Details

Deutleus	Detaile				
Particulars	Details				
Facility Name SNM College, Maliankara					
Address	Maliankara P.O, (Via) Moothakunnam, Ernakulam Dist, Kerala, Pin - 683516				
Contact	Ms. Jitha T H, Principal (Mob:+91 94957 42386)				
Number of staff	136				
Campus Area (Acres)	26.44				
Built-up area (m ²)	10740.53				
Annual Electricity	85 807 kWb				
Consumption	05,097 KWII				
Annual Energy Cost	Rs. 7,06,094				

About Campus

The college campus is located in 26.44 acres of land. There are 13 building blocks and 63 classrooms in the campus. The layout of the campus is attached in Appendix III.

1.2: Energy Share

Figure 1.1: Share of energy cost from different sources

The purchased electricity, generated electricity and LPG comprises 80%, 2% and 18% of the total energy consumption respectively.

Figure 1.2: Share of energy cost from different sources

The 76%, 8% and 16% of the total energy cost comprises purchased electricity, generated electricity and LPG respectively.

Energy & Utility Description

2.1: Electricity

Electricity is supplied by Kerala State Electricity Board Limited (KSEBL). Supply falls under high tension category with tariff classification HT- II (B), three phase supply. This electrical supply is common for the SNM Institute of Management Technology, SNM Polytechnic College and SNM College. The details of this common electrical supply are given below.

able 2-1. Details of common Electrical Supply						
Utility		KSEBL				
Consumer No.		13560800027	73			
Consumer Nan	ne	SNM Institute	of Managemen	t Technology		
Contract Dema	Ind	150 kVA				
Connected Loa	ted Load 739.19 kW					
Tariff category		HT-II (B)				
Tariff	Item	Rate	e (₹)	Amount – monthly		
structure				average (₹)		
Demand Charge		Rs. 500/month		61,000		
		Normal 6.8				
	Energy Charge	Peak 10.2		1,44,100		
		Off Peak	5.1			

Table 2-1: Details of Common Electrical Supply

The energy charge of tariff HT- II (B) is divided into two slabs based on the telescopic consumption. The facility comes under the lower slab with monthly consumption around 20,100 units and the facility pays energy charge of Rs. 6.8 per unit (Normal zone).

The consumption of the facility is accounted on three time zones with different per unit energy charge in each zone. The energy charge in normal zone (i.e, from 6 am to 6 pm) is Rs. 6.8/unit, in peak zone (i.e, from 6 pm to 10 pm) it is Rs. 10.2/unit and in off peak zone (i.e, form 10 pm to 6 am) it is Rs. 5.1/unit. Apart from the unit power charges, the tariff includes duty on electricity charged at Rs. 0.10 of energy charges. The effective energy rate thus comes to ₹ 6.9 and each unit saved saves the same amount (in normal zone). These charges are likely to be revised upwards in the next financial year.

The SNM College bears only 20% of KSEB bill amount as its share.

2.1.1: Details of Electrical Panels & Distribution Boards

The 315 KVA transformer, KSEB meter and Main panel including feeder for the SNM College are located in substation of SNM Institute of Management Technology. The 11 kV KSEB supply is step down to 420 V by 315 kVA transformer and fed to the main panel and then to the feeders in the individual campuses.

The SNM College have a separate generator for its own usage, having capacity of 125 KVA for the backup power.

ENERGY AUDIT REPORT

Figure 2.2: (a): Transformer, (b): Main Panel, (c): APFC Panel, (d): SNM College Feeder

Figure 2.2: (e): AMF Panel (Main Panel- SNM College), (f): SSB 1, (g): SSB 1A

2.2: Water

The facility uses water for drinking, cooking and sanitation requirements. The sources of water are Municipal water supply and open well. The facility employs a rain water harvesting tank also.

Figure 2.3 (a): Well, (b): Storage tank, (C): Rain Water Harvesting tank

2.3: Diesel

The facility uses diesel for the operation of generator. The facility have a 125 kVA diesel generator for backup power.

Figure 2.4: Generator

2.4: Biogas

The facility employs a biogas plant for the fuel usage in canteen in addition to LPG and wood.

Figure 2.5: Biogas Plant

Energy Performance

3.1: Energy Consumption

Annual Energy Consumption details and trend are given below.

Table 3-1: Energy Performance

Parameter	Electricity Diesel		LPG	Total
Annual Consumption	84,000	612	1,140	85,897
Unit of measurement	ent kWh Lt		kg	kWh
Annual cost (₹)	5,23,946	57,709	1,24,440	7,06,094
Built-up area (m2)	10740.53			
Energy Performance Index – EPI (kWh/m2/year)	7.8	0.2	-	8.0

The Energy Performance Index (EPI) is the key metric used for benchmarking energy usage in any commercial building or occupied office spaces. EPI is the energy used per unit area measured on an annual basis in kWh/m²/year.

3.2: Load Distribution

A load refers to the amount of power that a system or device consumes, while energy consumption refers to the amount of energy consumed by the system over a period of time. There are different types of loads employed in the facility such as pumps, lighting, AC etc. These loads vary depending on the operational requirements of the facility. The average load and consumption for different category of the loads is estimated from measured data and the summary for load and energy consumption is presented below.

Category	Load (kW)	Daily Consumption (kWh)
Fan	30.2	104.8
Plug Load	1.2	9.7
Lighting	13.4	48.1
UPS Load	23.0	78.2
AC	16.8	35.1
Pump	6.4	3.0
Total	91	279

Table 3-2:	Category	Wise	Power	Rating	and Energy	Consumption
	category	11190	1 01101	nacing	and Energy	consumption

Figure 3.1: Energy Consumption Category wise

The fans and the UPS load consumes more energy on daily basis which is 38 % and 28 % of total energy consumption.

Equipment Performance

4.1: Lighting

The lighting of the facility includes LED tubes, fluorescent tubes and halogen lights. The total lighting load of the facility is around 13.4 kW and consumes 48 units of energy daily. The street lighting of the facility is around 0.6 kW. The details of lights are given below.

Light Fitting	Nos	Load (kW)	Daily Consumption (kWh)
LED Tube	154	3.4	17.2
Tube	221	8.8	26.7
Halogen Bulb	2	0.1	1.2
LED Bulb	11	0.2	1.8
Square LED	32	0.6	0.6
LED Flood light	3	0.1	0.6
Total	423	13.2	48.1

Table 4-1: Lighting Details

4.2: Pumps

The facility employs 8 water pumps and more than 6 storage tanks. The details of pumps employed by the facility is given below.

|--|

SI. No	Area		Duty	Watts	Nos	kWh
1	Canteen	Pump	Upward pumping	370	1	0.10
2		Pump	Upward pumping	370	1	0.07
3		Pump	Upward pumping	1100	1	0.44
4	Main	Pump	Upward pumping	750	1	0.15
5	DIUCK	Filter Pump	Downward pumping 1500		1	0.36
6		Pump	Upward pumping	750	1	0.45
7		Pump	Upward pumping	500	1	0.10
8		Pump	Upward/Downward pumping	1100	1	1.32
	Tota	al		6.44 kW		2.99 kWh

4.3: Air Conditioners

The facility employs 10 split air conditioners in different sections. The details of air conditioners employed in the facility are given below.

SI. No	Location	Make	TR	Star	EER	Power (W)	Year	Νο
1	Plant Tissue Culture Lab	Voltas	1.5			1650		1
2	Microalgal Culture Lab	Lloyd	1.0	3	3.60	1170	2018	1
3	Seminar Hall	Voltas	1.5	3	2.71	1860	2011	2
4	Seminar Hall	Lloyd	2.0	3	3.39	1890	2018	2
5	Multimedia Room	Daikin	1.5	3	3.25	1970	2014	2
6	Principal Room	Daikin	1.5	3	3.25	1970	2014	1
7	Principal Room - Office	Voltas	1.5	3	2.71	1860	2011	1

Table 4-3: AC Details

Climate Impact

The carbon footprint of the facility is the total amount of carbon dioxide (CO2) and other greenhouse gas emissions produced by the operations of the facility. The main sources of carbon emissions of common utility in the facility are the energy consumed by the pumps, lighting, AC and the fuel used to power the generators. The carbon footprint of of the facility is calculated by assessing the emissions associated with the energy consumed and fuel used during the operation of the facility. The annual energy carbon footprint can be tabulated as below:

Table 5-1: Carbon Emission Details

Parameter	Electricity	Diesel	LPG	Total
Annual Consumption	84,000	612	1,140	85,897
Unit of measurement	kWh	Ltr.	Kg	kWh
Annual equivalent				
emission	68.9	1.6	3.4	73.9
(Tons of CO ₂)				

The facility causes emission equivalent to 74 tons of carbon dioxide every year.

The share of different sources in carbon emission can be graphically represented as

Figure 5.1: Share of carbon emission equivalent from different sources

The 92% of carbon emission taken place as a result of usage of purchased electricity, 6% of carbon emission from the LPG and 2% of emission take place as the result of usage of backup power.

Recommendations for Energy Conservation

Our country strives to achieve Net Zero in the future. It is suggested that all our public and private buildings set a model by progressive reduction in energy consumption reflected by the EPI, adopting energy efficient measures and tapping renewable energy potential. The proposals are summarised below.

SI. No.	Energy Saving Option	Catego ry	Annual Energy Saving	Reduction in emission (Tons of CO ₂)	Remarks
1	Replace existing tube lights with LED tubes	EE	3,629 kWh	3.0	
2	Replace existing ceiling fan with energy efficient BLDC fans	EE	15,437 kWh	12.6	
3	Replace existing 3 star AC to latest 5 star inverter AC	EE	2,135 kWh	1.8	
4	Install 4 kW off grid solar PV on rooftop	RE	5,840 kWh	4.8	
5	Install 15 kW on grid solar PV on rooftop	RE	21,900 kWh	18.0	
	Total		48,940	40.1	

Minor Recommendations:

- 1. Avoid wastages by switching off lights in day-lit areas.
- 2. Switch off extra lights.
- 3. Human behavior place an important part in energy and equipment usage. Creating awareness among staffs and students thus place an important part in energy conservation. It is recommended to identify innovative ways to improve awareness of staffs and students.
- 4. Energy conservation posters can be displayed in corridors
- 5. Measurement forms the first step in energy monitoring and conservation. Monitor the energy consumption of the facility from the meter provided in the AMF feeder in the main panel located in the SNM Institute of Management Technology. For effective monitoring a metering facility may be introduced at the incomer of the facility.
- 6. Energy efficient pumps to be purchased while replacing the pumps

Detailed calculation and cost benefit analysis of recommendations for energy saving wherever quantified are listed below.

ENERGY SAVING PROPOSAL – 1

Replacement of Fluorescent Tubes with LED (EEM)

Background: Presently the facility employs fluorescent tubes, halogen lights and LED tubes.

Proposal: By replacing the fluorescent tubes with LED of similar length the power consumption will reduce considerably by approximate 50% even with the present operating hours. The calculation for the savings, approximate investment cost and payback period is tabulated below.

Particulars	Unit	Value
Power of present tube lights	Watts	40
Proposed LED tube	Watts	22
Difference in Wattage	Watts	18
Average No: of working hours/tube/day	Hrs	8
No. of tubes	No.	105
Daily power saving	kWh	15.12
No: of working days per year (Average)	Nos	240
kWh Saving per Annum	kWh	3629
Cost per kWh (Average)	Rs	6.90
Annual Financial Savings	Rs	25039
Cost of LED tube	Rs	450
Investment for LED lights	Rs	47250
Simple Payback period	Months	23
Saving in emission	Tons of CO2	2.98

ENERGY SAVING PROPOSAL – 2

Replacement of existing ceiling fans with energy efficient 5-star rated BLDC fans

Background: Star rating of ceiling fans is a recent development. Presently star rating is based on AC induction motor design improvement. For normal air flow they consume around 55 W of power compared to 75 W consumed by conventional fans. Now fans using BLDC technology are also commercially available which consume around 35 W power only for similar air flow and offer higher saving. These fans take in AC power and internally converts it into DC using SMPS. The main difference between BLDC and ordinary DC fans is the commutation method. A commutation is basically the technique of changing the direction of current in the motor for the rotational movement. In a BLDC motor, as there are no brushes, so the commutation is done by the driving algorithm in the Electronics. The 1200 mm size BLDC fan at dull speed consumes only around 22 to 27W instead of the present ceiling fan with induction motors that takes 60 to 70W as per the manufactures.

Proposal: Replace the ceiling fans with BLDC/BEE star rated fans in main sections of the facility. There are many ceiling fans in the facility. The calculation for the savings is given in the table below.

Ceiling Fan

Particulars	Unit	With BLDC
Power of existing ceiling fans at full speed	Watts	75
Power of replacing fan	Watts	35
Difference in Wattage	Watts	40
Avg No: of working hours/day	Hrs	6
Number of Ceiling Fans operating	Nos	268
No: of working days per year (Average)	Days	240
Daily energy saving	kWh/day	64.32
kWh Saving per Annum	kWh	15436.8
Cost per kWh (Average)	Rs	6.90
Annual Financial Savings	Rs	106514
Cost of replacing Fan per piece	Rs	3200
Investment for replacing Fan	Rs	857600
Simple Payback period*	Months	97
Saving in emission	Tons of CO ₂	12.7

ENERGY SAVING PROPOSAL – 3

Replacement of existing 3 star Air Conditioners with energy efficient 5-star rated Air Conditioners

Background: Presently the facility employs 3 star rated AC (as per previous classification) in their working areas.

Proposal: Replace 3 star rated Air Conditioners with energy efficient new 5-star rated Air Conditioners. The calculation for the savings is given in the table below.

Air Conditioner

Particulars	Unit	Plant Tissue Culture Lab	Microal gal Culture Lab	Princip al	Total
Power of present 3 Star AC	Watts	1650	1170	1170	3990
Power of Proposed 5 Star AC	Watts	1290	860	860	3010
Difference in Wattage	Watts	360	310	310	980
Average No: of working hours/AC/day	Hrs	12	12	6	10
No. of AC	No.	1	1	1	3
No: of working days per year (Average)	kWh	210	210	240	220
Daily power saving	Nos	4.3	3.7	1.9	9.9
kWh Saving per Annum	kWh	907	781	446	2135
Cost per kWh (Average)	Rs	6.90	6.90	6.90	6.90
Annual Financial Savings	Rs	6260	5390	3080	14730
Cost of AC	Rs	45000	36000	36000	117000

Particulars	Unit	Plant	Microal	Princip	Total
		Tissue	gal	al	
		Culture	Culture		
		Lab	Lab		
Investment for AC	Rs	45000	36000	36000	117000
Simple Payback period	Months	86	80	140	95
Saving in emission	Tons of CO2	0.7	0.6	0.4	1.8

ENERGY SAVING PROPOSAL – 4

Install 4 kW off grid solar PV on rooftop

The Sun is an inexhaustible, reliable and non-polluting source of power. Since the inception of life on earth, the only energy that was available came from the sun. Of the numerous renewable sources of energy known to mankind, Solar Photo Voltaic or SPV is one that has the potential to supply power for our future needs.

The facility not have its own KSEB connection and meter. The energy meter is located in another campus, SNM Institute of Management Technology across the road. So, in order to install ongrid solar plant, the facility have its limitations and procedures. So, in first stage we recommend to install a 4 kW off grid solar plant in the roof main building. Investment and saving are summarised below.

Particulars	Unit	Value
Proposed plant capacity	kWp	4
Average Energy Generation	kWh/day	16
Average Energy Generation	kWh/year	5840
Present annual unit consumption	kWh/year	84,000
Average utility electricity cost	Rs	9.50
Annual Financial Savings from generation	Rs	55,498
Investment (subsidized & in grid tied mode)	Rs	360,000
Simple payback period	Months	78
Saving in emission	Tons of CO2	4.8

ENERGY SAVING PROPOSAL – 5

Install 15 kW solar PV on rooftop

The Sun is an inexhaustible, reliable and non-polluting source of power. Since the inception of life on earth, the only energy that was available came from the sun. Of the numerous renewable sources of energy known to mankind, Solar Photo Voltaic or SPV is one that has the potential to supply power for our future needs.

If the facility overcomes its limitations to install on grid solar system, then we suggest to install a 15 kw on grid solar Pv on rooftop of main building. Investment and saving are summarized below.

Particulars	Unit	Value
Proposed plant capacity	kWp	15
Average Energy Generation	kWh/day	60
Average Energy Generation	kWh/year	21900
Present annual unit consumption	kWh/year	84,000
Average utility electricity cost	Rs	6.9
Annual Financial Savings	Rs	151,110
Investment (subsidized & in grid tied mode)	Rs	1,125,000
Simple payback period	Months	90
Saving in emission	Tons of CO ₂	18.0

Appendix

Appendix I – Electricity Bill

KERALA STATE ELECTRICITY BOARD LIMITED

Office of the Special Officer(Revenue), Pattom,Thiruvananthapuram **DEMAND NOTICE FOR MARCH 2023** (As per CHAPTER VII OF KERALA ELETRICITY SUPPLY CODE -2014)

Con.	13	\$5608000	2773		Bill Date	01-Mar	-2023	0	Due Date	08-Ma	r-2023	3	Bill.Ne	c		210281	111047494 \	/er : 0
Tariff	H	Г II (B) GI	ENERA	L				L	ast Date	23-Ma	r-2023	3	CD			37190	0 BG	0
SNM	INST	TUTE	OF MA	ANAGEM	ENT TECH	INOLO	GY	1000	SBI Virtu	al A/c	No(I	FS Cod	le:SE	3IN00704	193)-	KSEBH	IT17C4584	
SNM	1 Institu	te of m	anage	ement Te	chnology M	Aalliank	ara,B I	No.	Consume	er GST	IN_ID	- /KSEB	(L)G	ST ID=32	AAEC	K2277N	IBZ1	
VIII/	622B,								Fuel Sur	charge(@/0.0	99						
FRN			orth Pa	aravoor,iv	lalliankara	,												
Mob	ile no	944605	4205	LCN :17	/4584													
		Arro	are as o	n 31- lan-2	023		Date	of Pre	vious Read	ling	31-1	lan-2023	En	ail: ao@	enm	imt edu	in	
Dispu	ted	74104	13 43 0	Indicouted	020	0	Date	of Pre	sont Roadi	na	28-6	Feb-202	3 611	anly Volta		11 61	 Lut	
Dispu			90	T	-					9	20-1	00-202			ge			
Co	ontract	75% (of CD	130% of (CD Connect	ed Load		1.3/6	Aver	age	1.144-1	DE	Bill	ing Type		Mooth	kunnom	
1	50.0	11	2.5	105.0	730	101	111	2 44) Consum	20977	KVVII)	0.00	Cir	de		Ernaku	lam	
-	50.0	1 10	2.0	135.0	100	.101				20077		1 0.00	10"			Emana		
			Read	ling Deta	ails of met	er 2000	02743-	Woi	rking (KV	A,KV	Vh,K	VAh 8	KV	Arh) fo	r 02-	2023		
1. En	ergy Co	nsumptio	n(KWh	1)				3. E	nergy Con	sumpti	ion(K	VArh) I	ag a	Ind	kV	ARh (L	ead)	
Zone	F	R		IR	MF	Un	its	Zon	e FR	1	R	MI	-	Units		FR	IR	Units
1	1.	16649.00		39/12.00	2.000		13874	1	7352.0	0 68	55.00	2.00	00	99	4 1.	3503.00	3133.00	2/4
3		54114 00		52016.00	2.000		4196	2	4709.0	0 43	75.00	2.00	0	66	8 4	5468.00	5460.00	16
-		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		02010.00	Total		20346		1100.0	0 10	Total	kVArh	Lag)	198	0 KVA	rh(Lead)	296
2. En	ergy Co	nsumptio	on(KVA	.h)				4. D	emand (KV	A)		R	eadir	igs	1	ИF	Un	its
Zone	F	R		IR	MF	Un	its	1	1					51.699	2.	000		103.4
1	14	19824.00		142844.00	2.000		13960	2	2					13.263	2.	000		26.53
2		29761.00		28607.00	2.000		2308	3	3					11.841	2.	000		23.68
3	-	55469.00		53336.00	2.000		4266	5.Fa	actory Ligh	ting					_			0.0
Ave P	E-KWb/	K\/Ab			0.99		20534	0.C	enerator	ang								0.0
1110.1					0.00													
								IN	VOICE							_		
					Uni	t	Rate		Amount	(Rs)	_						Amou	nt
1.Tota	al Demar	nd Charge) 					-			9.	Other C	harge	es		_		
a.L	Demand	Charge -	Normal			113.0	500.00	0		56500	.00	Fuel Sur	charge	9		_		1831.14
D.L	Demand	Charge -	Off pool	k		0.0	500.00	0		0.	.00	Reconne	ection	Fee		_		0.00
d E	Tycess D	emand C	harne	ĸ		0.0	500.00	0		0.	00	Charges	for Be	slated Payr	nents			2393.00
e.E	xcess D	emand C	harge(F	Peak)		0.0	250.00	0		0	00							
f.E	xcess De	emand Ch	narge (C	Off		0.0	250.00	0		0	00							
Sub T	fotal (a+	b+c+d+e	+f)			0.0	200.00	-		56500	.00							
2.Tota	al Energy	/ Charges	;					-										
a. E	Energy cl	narges - N	lormal			13874	6.8000	0		94343	20							
b. E	Energy cl	narges - F	Peak			2276.0	10.200	0		23215.	20							
C. E	nergy ch	narges - C	Off peak			4196.0	5.1000	0		21399.	.60							
Sub T	fotal(a+	o+c)							1	38958.	.00							
3.PF	Incentive	/ Disince	entive					_		-2779	16							
Total	Energy	Charge							1	36178.	.84							
4.Ene	rgy Cha	ges on L	ighting	load	1						-			1. 01		-		
a.r.	actory Li	gnung				0	0	2		0	00 0	U. I Otal		to 9)		_		211307.43
Sub 1		anung				0	0.	2		0.	00 PI	InDieput	s (Re					-0.43
5 Eler	stricity D	ity			1	138958	0.10	0		13895	80 Le	ess 1	Advar	nce / Crec	lit	_		0.00
6.Ele	Surchar	qe				20346	0.02	5		508	.65	2	CD In	terest				0.00
7.Dut	y on self	generate	d energ	IV		0	0.01	2		0	00	3.	CD R	tefund		_		0.00
8.Pen	alty for r	ion-segn.	of light	load				+			- L.						-	4207.00
												let Pay	able	Э			2	1307.00
(Rupe	ees Two	Lakh Ele	even Th	nousand Ti	hree Hundre	d Seven	Only)											
E & O	e.e							B	alance Adv	ance a	t Cree	dit, if an	V					
As p	er Reg	ulation	130 o	f Kerala	Electricity	Supply	Code	201	4 any co	mplair	nt reg	gardin	g ac	curacy	ofa	bill sha	all be first	taken up
win t	ne onic	& anno	gnate	d to issue	e the bill (a	special	Unice	r(Re	evenue)).	Pleas	e to	liow of	ir on	icial Fa	cepc	ок рас	ge fb.com	KSEDI TOP
111011	nation	danno	ancen	ients.(i ie		ne mau	uctions	5 0 0	enear)									
L							0	Detter		- 00				SPEC	IAL	OFFIC	ER (REV	ENUE)
		70				1015	mease	Jesach	and enclose with t		-							
1356	0800027	73		CARLE T	2102811	1047494				Rs	.2113	07.00		_			м	arch 2023
DD	ana III aumost		ANAG	CINENT IE	CHNOLOG	blame	6 Mar.	ì				_	as 1174	12122		1.1	ালা -	Signature
UD/F	ayment	misti ucilo				Name o	n the					Dat	e	1.00 [[[]]		12		

App	endi	x II —	load	Matrix
7PP	Chu	A 11	Louu	IVIGUIA

SI. No.	Area Group	Area	Equipme nt Category	Equipment	Pow er Ratin	No. Of Devic es	No. of room	Total No. of Devic	Total Pow er
					g (W)		S	es	(W)
1	Main Block	Plant Tissue Culture Lab	Lighting	LED Tube	22	4	1	4	88
2	Main Block		Lighting	LED Tube	22	2	1	2	44
3	Main Block		UPS Load	UPS	6000	1	1	1	6000
4	Main Block		AC	AC	1650	1	1	1	1650
5	Main Block	Microalgal Culture Lab	Lighting	LED Tube	22	14	1	14	308
6	Main Block		Lighting	LED Tube	22	2	1	2	44
7	Main Block		Lighting	Tube	40	1	1	1	40
8	Main Block		AC	AC	1170	1	1	1	1170
9	Main Block	Fist Funded Centralised	Lighting	LED Tube	22	1	1	1	22
10	Main Block	Instrumentati on &	Lighting	Tube	40	5	1	5	200
11	Main Block	Computer Lab	AC	AC	2500	1	1	1	2500
12	Main Block	Room	Lighting	LED Tube	22	1	1	1	22
13	Main Block		Lighting	Tube	40	2	1	2	80
14	Main Block		Fan	Ceiling Fan	75	3	1	3	225
15	Main Block	Staff Room	Lighting	Tube	40	2	1	2	80
16	Main Block		Fan	Ceiling Fan	75	4	1	4	300
17	Main Block	Physiochemis try Lab	Lighting	Tube	40	2	1	2	80
18	Main Block		Fan	Ceiling Fan	75	4	1	4	300
19	Main Block		Plug Load	Refrigerato r	250	1	1	1	250

20	Main Block	Research Lab	Lighting	LED Tube	22	2	1	2	44
21	Main Block		Lighting	Tube	40	2	1	2	80
22	Main		Fan	Ceiling Fan	75	4	1	4	300
23	Main Block	BSC Lab	Lighting	LED Tube	22	2	1	2	44
24	Main Block		Lighting	Tube	40	2	1	2	80
25	Main Block		Fan	Ceiling Fan	75	4	1	4	300
26	Main Block	Class Room	Lighting	LED Tube	22	1	1	1	22
27	Main Block		Lighting	Tube	40	1	1	1	40
28	Main Block		Fan	Ceiling Fan	75	4	1	4	300
29	Main Block	Zoology BSC Lab	Lighting	Tube	40	16	1	16	640
30	Main Block		Fan	Ceiling Fan	75	4	1	4	300
31	Main Block		Lighting	Incandesce nt lamp	60	2	1	2	120
32	Main Block		Lighting	CFL	30	1	1	1	30
33	Main Block		Plug Load	Refrigerato r	250	1	1	1	250
34	Main Block	Zoology MSC Lab	Lighting	LED Tube	22	2	1	2	44
35	Main Block		Lighting	Tube	40	5	1	5	200
36	Main Block		Fan	Ceiling Fan	75	5	1	5	375
37	Main Block	Class Room	Lighting	LED Tube	22	1	1	1	22
38	Main Block		Lighting	Tube	40	1	1	1	40
39	Main Block		Fan	Ceiling Fan	75	4	1	4	300
40	Main Block	Staff Room	Lighting	Tube	40	2	1	2	80
41	Main Block		UPS Load	UPS	600	1	1	1	600
42	Main Block		Fan	Ceiling Fan	75	4	1	4	300

21 | Page

43	Main Block	Office	Lighting	LED Tube	22	8	1	8	176
44	Main		Fan	Ceiling Fan	75	9	1	9	675
	Block			0					
45	Main		UPS Load	UPS	600	6	1	6	3600
	Block								
46	Main		Lighting	Square LED	20	8	1	8	160
	Block								
47	Main	Principal	Lighting	LED Tube	22	2	1	2	44
	Block	Room,				-		-	
48	Main	Manager	UPS Load	UPS	600	1	1	1	600
	Block	Room			50	2		-	100
49	Main		Lighting	LED Flood	50	2	1	2	100
50	BIOCK	Drineinel	10	light	1900	1	1	1	1900
50	Rlock	Principal	AC	AC	1800	Т	T	T	1900
51	Main	KOOIII	٨٢	٨٢	1800	1	1	1	1800
51	Block				1850	1	1	1	1850
52	Main	Office Room	Lighting	LED Tube	22	2	1	2	44
	Block					-	-	-	
53	Main		Fan	Ceiling Fan	75	5	1	5	375
	Block			0					
54	Main	Chemistry	Lighting	Tube	40	15	1	15	600
	Block	Lab							
55	Main		Fan	Ceiling Fan	75	3	1	3	225
	Block								
56	Main		Fan	Exhaust	30	2	1	2	60
	Block			Fan					
57	Main		Plug Load	Refrigerato	250	1	1	1	250
	Block			r		-		-	
58	Main	Chemistry	Lighting	Tube	40	6	1	6	240
ГО	BIOCK	Instruments	Fan	Coiling For	75	2	1	2	225
23	Rlock		Fdfi	Cening Fan	/5	5	T	5	225
60	Main	Multimedia	<u>۸</u> ۲	AC	1970	2	1	2	3940
00	Block	Room		70	1570	2	1	2	3340
61	Main	nooni	Lighting	LED Tube	22	1	1	1	22
•-	Block		00			-	-	-	
62	Main		Lighting	LED Flood	30	1	1	1	30
	Block		0 0	light					
63	Main		Fan	Ceiling Fan	75	1	1	1	75
	Block								
64	Main	Staff Room	Lighting	Tube	40	2	1	2	80
	Block								
65	Main		UPS Load	UPS	600	1	1	1	600
	Block								

22 | Page

66	Main Block		Fan	Ceiling Fan	75	4	1	4	300
67	Main	Store & Gas Hall	Lighting	Tube	40	4	1	4	160
68	Main Block		Fan	Ceiling Fan	75	2	1	2	150
69	Main Block	BSC Physics Lab	Lighting	Tube	40	15	1	15	600
70	Main Block		Fan	Ceiling Fan	75	3	1	3	225
71	Main Block		Fan	Exhaust Fan	30	2	1	2	60
72	Main Block	MSC Physics Lab	Lighting	Tube	40	6	1	6	240
73	Main Block		UPS Load	UPS	600	1	1	1	600
74	Main Block		Fan	Ceiling Fan	75	3	1	3	225
75	Main Block	Staff Room	Lighting	Tube	40	2	1	2	80
76	Main Block		Fan	Ceiling Fan	75	4	1	4	300
77	Main Block	Electronics Lab	Lighting	Tube	40	6	1	6	240
78	Main Block		Fan	Ceiling Fan	75	3	1	3	225
79	Main Block	MSC Physics Class Room	Lighting	LED Tube	22	1	1	1	22
80	Main Block		Lighting	Tube	40	1	1	1	40
81	Main Block		Fan	Ceiling Fan	75	4	1	4	300
82	Centinary Block	Library	Lighting	Tube	40	20	1	20	800
83	Centinary Block		Fan	Ceiling Fan	75	16	1	16	1200
84	Centinary Block		UPS Load	UPS	2000	1	1	1	2000
85	Centinary Block	Seminar Hall	AC	AC	1860	1	1	1	1860
86	Centinary Block		AC	AC	1890	1	1	1	1890
87	Centinary Block		Lighting	Square LED	20	6	1	6	120
88	Centinary Block		Fan	Ceiling Fan	75	3	1	3	225

23 | Page

89	Centinary Block	Sree naravana	Lighting	LED Tube	22	2	1	2	44
90	Centinary Block	Research centre	Lighting	Tube	40	2	1	2	80
91	Centinary Block		Fan	Ceiling Fan	75	4	1	4	300
92	Centinary Block	Staff Cooperative	Lighting	LED Tube	22	2	1	2	44
93	Centinary Block	society	Lighting	Tube	40	2	1	2	80
94	Centinary Block		Fan	Ceiling Fan	75	4	1	4	300
95	Centinary Block	Toilet	Lighting	LED Tube	22	2	2	4	88
96	Centinary Block		Lighting	Tube	40	2	2	4	160
97	Centinary Block	Hindi Department	Lighting	Tube	40	2	1	2	80
98	Centinary Block		UPS Load	UPS	600	1	1	1	600
99	Centinary Block		Fan	Ceiling Fan	75	4	1	4	300
100	Centinary Block	English Department	Lighting	Tube	40	2	1	2	80
101	Centinary Block		UPS Load	UPS	600	1	1	1	600
102	Centinary Block		Fan	Ceiling Fan	75	4	1	4	300
103	Centinary Block	Malayalam Department	Lighting	Tube	40	2	1	2	80
104	Centinary Block		UPS Load	UPS	600	1	1	1	600
105	Centinary Block		Fan	Ceiling Fan	75	4	1	4	300
106	Centinary Block	Class Room	Lighting	LED Tube	22	1	13	13	286
107	Centinary Block		Lighting	Tube	40	1	13	13	520
108	Centinary Block		Fan	Ceiling Fan	75	4	13	52	3900
109	Centinary Block	Staff Room	Lighting	Tube	40	2	1	2	80
110	Centinary Block		UPS Load	UPS	600	1	1	1	600
111	Centinary Block		Fan	Ceiling Fan	75	4	1	4	300

112	Centinary Block	Class Room	Lighting	LED Tube	22	1	9	9	198
113	Centinary Block		Lighting	Tube	40	1	9	9	360
114	Centinary Block		Fan	Ceiling Fan	75	4	9	36	2700
115	Centinary Block	Health Department	Lighting	Tube	40	2	1	2	80
116	Centinary Block		Fan	Ceiling Fan	75	4	1	4	300
117	Centinary Block	Toilet	Lighting	LED Tube	22	2	1	2	44
118	Centinary Block		Lighting	Tube	40	2	1	2	80
119	Centinary Block	Class Room	Lighting	LED Tube	22	1	9	9	198
120	Centinary Block		Lighting	Tube	40	1	9	9	360
121	Centinary Block		UPS Load	UPS	600	1	1	1	600
122	Centinary Block		Fan	Ceiling Fan	75	4	9	36	2700
123	Centinary Block	Toilet	Lighting	LED Tube	22	2	2	4	88
124	Centinary Block		Lighting	Tube	40	2	2	4	160
125	Auditoriu m	Auditorium	Lighting	Square LED	20	18	1	18	360
126	Auditoriu m		Fan	Ceiling Fan	75	21	1	21	1575
127	Old Block	Class Room	Lighting	LED Tube	22	1	9	9	198
128	Old Block		Lighting	Tube	40	1	9	9	360
129	Old Block		Fan	Ceiling Fan	75	4	9	36	2700
130	Old Block	Chemistry	Lighting	Tube	40	6	1	6	240
131	Old Block	Lab	Fan	Ceiling Fan	75	3	1	3	225
132	Old Block	Canteen	Plug Load	Refrigerato r	250	1	1	1	250
133	Old Block		Plug Load	Cooler	200	1	1	1	200
134	Old Block - A	Class Room	Lighting	LED Tube	22	1	4	4	88
135	Old Block - A		Lighting	Tube	40	1	4	4	160
136	Old Block - A		Fan	Ceiling Fan	75	4	4	16	1200

137	NCC Building	Room	Lighting	LED Tube	22	2	5	10	220
138	NCC		Lighting	Tube	40	1	5	5	200
	Building								
139	SF Block		UPS Load	UPS	600	5	1	5	3000
140	NCC		Fan	Ceiling Fan	75	4	5	20	1500
	Building								
141	RUSA	Class Room	Lighting	LED Tube	22	1	3	3	66
	Building								100
142	RUSA		Lighting	Tube	40	1	3	3	120
1/12	Building		Ean	Coiling Ean	75	2	2	0	675
145	Ruilding		Fall		/3	5	5	9	075
144	SF Block	Class Room	Lighting	LED Tube	22	1	8	8	176
145	SF Block		Lighting	Tube	40	1	8	8	320
146	SE Block		UPSLoad	UPS	3000	1	1	1	3000
147	SF Block		Fan	Ceiling Fan	75	3	8	24	1800
148	Block 9	Class Room	Lighting	LED Tube	22	1	3	3	66
149	Block 9		Lighting	Tube	40	1	3	3	120
150	Block 9		Fan	Ceiling Fan	75	3	3	9	675
151	Block 10	Toilet	Lighting	LED Tube	22	2	1	2	44
101	(Toilet)	Tonet	21811118		~~	-	-	-	
152	Block 10		Lighting	Tube	40	2	1	2	80
	(Toilet)								
153	Block 11	Store	Lighting	LED Tube	22	2	1	2	44
	(Store)								
154	Block 11		Fan	Ceiling Fan	75	1	1	1	75
455	(Store)		1.1.1.1.1.1	T 1	40	2	4	2	00
155	BIOCK 11		Lighting	Tube	40	2	1	2	80
156	Block 12	Womens Rest	Lighting	LED Tube	22	1	3	3	66
157	Block 12	Room	Lighting	Tube	40	1	3	3	120
158	Block 12		Fan	Ceiling Fan	75	2	3	6	450
159	Block 13	Workshop	Lighting	LED Tube	22	2	1	2	44
160	Block 13	Workshop	Fan	Ceiling Ean	75	1	1	1	75
161	Block 13		Lighting	Tube	10	2	1	2	80
162	Common	CB	Lighting	LED Tube	22	2	1	2	88
163	Common	CD	Lighting		10	1	1	1	10
164	Common		Lighting	Halogen	50	1	1	1	50
104	Common		Lighting	Bulb	50	1	1	1	30
165	Common	Main Block	Lighting	LED Tube	22	9	1	9	198
166	Common		Lighting	LED Bulb	10	4	1	4	40
167	Common		Lighting	LED Bulb	50	1	1	1	50

168	Common		Lighting	Tube	40	1	1	1	40
169	Common	Physical Bldg	Lighting	LED Tube	22	2	1	2	44
170	Common	Canteen	Lighting	LED Tube	22	1	1	1	22
171	Common	Resting Room	Lighting	LED Tube	22	1	1	1	22
172	Common	Statue	Lighting	LED Bulb	10	4	1	4	40
173	Common		Lighting	Halogen Bulb	50	1	1	1	50
174	Common	Watchhouse	Lighting	LED Bulb	10	1	1	1	10
175	Common	Canteen	Pump	Pump	370	1	1	1	370
176	Common		Pump	Pump	370	1	1	1	370
177	Common	Main Block	Pump	Pump	1100	1	1	1	1100
178	Common		Pump	Pump	750	1	1	1	750
179	Common		Pump	Filter Pump	1500	1	1	1	1500
180	Common		Pump	Pump	750	1	1	1	750
181	Common		Pump	Pump	500	1	1	1	500
182	Common		Pump	Pump	1100	1	1	1	1100
			Total						90.9 kW

ENERGY AUDIT REPORT

Appendix III – Layout

А	Main Block
В	Centinary Block
С	Auditorium
D	Old Block
E	Old Block - A
F	NCC Building
G	RUSA Building
Н	SF Block
I	Block 9
J	Block 10 (Toilet)
К	Block 11 (Store)
L	Block 12
M	Block 13

Appendix III - Abbreviations

CO2 – Carbon dioxide **DB** – Distribution Board EC – Energy Consumption EE – Energy Efficiency EEM - Energy Efficiency Measures EER – Energy Efficiency Rating EPI – Energy Performance Index Hrs – Hours HT - High Tension IECC – International Energy Conservation Code ISO – International Organization for Standardization KSEBL - Kerala State Electricity Board Limited kVA - Kilo Volt Ampere kW – Kilowatt kWh - Kilowatt hour LDB – Lighting Distribution Boards LED – Light emitting diode Ltr – Liter M2 – Meter Square MDB - Main Distribution Board Nos – Numbers PF – Power Factor RE – Renewable Energy Rs – Rupees Sq. m – Square Meter Std - Standard THD – Total Harmonic Distortion UPS - Uninterrupted Power Supply V – Volts W-Watt